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Abstract. Attention is focused on antisymmetrized versions of quantum spaces that are of particular
importance in physics, i.e. two-dimensional quantum plane, q-deformed Euclidean space in three or four
dimensions as well as q-deformed Minkowski space. For each case standard techniques for dealing with q-
deformed Grassmann variables are developed. Formulae for multiplying supernumbers are given. The actions
of symmetry generators and fermionic derivatives upon antisymmetrized quantum spaces are calculated.
The complete Hopf structure for all types of quantum space generators is written down. From the formulae
for the coproduct a realization of the L-matrices in terms of symmetry generators can be read off. The
L-matrices together with the action of symmetry generators determine how quantum spaces of different
type have to be fused together.

1 Introduction

It is an old idea that limiting the precision of position
measurements by a fundamental length will lead to a new
method for regularizing quantum field theories [1]. It is also
well-known that such a modification of classical spacetime
will in general break its Poincaré symmetry [2]. One way
out of this difficulty is to change not only spacetime, but
also its underlying symmetry.

Quantum groups can be seen as deformations of clas-
sical spacetime symmetries, as they describe the sym-
metry of their comodules, the so-called quantum spaces.
From a physical point of view the most realistic exam-
ples for quantum groups and quantum spaces arise from
q-deformation [3–9]. In our work we are interested in q-
deformedversions ofMinkowski space andEuclidean spaces
as well as their corresponding symmetries, given by q-
deformed Lorentz algebra and algebras of q-deformed angu-
lar momentum, respectively [10–14]. Wess and his cowork-
ers were able to show that q-deformation of spaces and sym-
metries can indeed lead to discretizations, as they result
from the existence of a smallest distance [15,16]. This ob-
servation nourishes the hope that q-deformation might give
a new method to regularize quantum field theories [17–20].

In our previous work [21–26] attention was focused on
symmetrized versions of q-deformed quantum spaces that
are of particular importance in physics, i.e. two-dimensional
Manin plane, q-deformed Euclidean space in three or four
dimensions, and q-deformed Minkowski space. As there is
a need for Grassmann variables in physics we would like to
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discuss antisymmetrized versions of those quantum spaces
as well.

In particular, we intend to proceed as follows. In Sect. 2
we cover the ideas our considerations about q-deformed
quantum spaces are based on. For further details we rec-
ommend [27,28]. In the subsequent sections we apply these
reasonings to antisymmetrized versions of two-dimensional
quantum plane, q-deformed Euclidean space with three or
four dimensions as well as q-deformed Minkowski-space.

More concretely, we develop some standard techniques
for dealing with q-deformed Grassmann variables. In doing
so, we start from the commutation relations for q-deformed
Grassmann variables and introduce q-deformed supernum-
bers. After that we are going to derive explicit formulae
for multiplying q-deformed supernumbers. In addition to
this, we are going to calculate the action of symmetry
generators and partial derivatives upon antisymmetrized
quantum spaces. Furthermore, we are going to write down
the complete Hopf structure on quantum space generators,
including their coproduct, antipode, and counit.

One should realize that the explicit form of the coprod-
uct on quantum space generators enables us to read off a
realization of the so-called L-matrices in terms of symme-
try generators. This knowledge together with the action
of symmetry generators upon quantum spaces tells us how
quantum spaces of different type have to be fused together.

2 Basic ideas
on antisymmetrized quantum spaces

In our approach spacetime symmetries are described by
quantum algebras like Uq(su2), Uq(so4) or q-deformed
Lorentz algebra. Important for us is the fact that these alge-
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bras are quasitriangular Hopf algebras, i.e. their coproduct
can be twisted by an invertible element R ∈ H⊗H, which
is known as the universal R-matrix of the corresponding
Hopf algebra H. Formally, we have

τ ◦∆h = R(∆h)R−1, h ∈ H, (1)

where ∆ and τ denote respectively the coproduct on H
and the transposition map.

The modules of the quantum algebras are called quan-
tum spaces. At a first glance a quantum space is nothing
other than an algebra A generated by non-commuting co-
ordinates X1, X2, . . . , Xn, i.e.

A = C [[X1, . . . Xn]] /I, (2)

where I denotes the ideal generated by the relations of the
non-commuting coordinates.

It should be noted that we can combine a quantum
algebra H with its representation space A to form a left
cross product algebra A � H built on A⊗H with product

(a⊗ h)(b⊗ g) = a(h(1) � b)⊗ h(2)g, a, b ∈ A, h, g ∈ H,
(3)

where � denotes the left action of H on A. There is also
a right-handed version of this notion called a right cross
product algebra H � A and built on H ⊗A with product

(h⊗ a)(g ⊗ b) = hg(2) ⊗ (a � g(1))b, (4)

where � now stands for the right action of H on A. The
last two identities tell us that the commutation relations
between symmetry generators and representation space el-
ements are completely determined by coproduct and action
of the symmetry generators, since we obtain from them

hb = (h(1) � b)h(2), ag = g(2)(a � g(1)). (5)

However, in what follows it is necessary to take another
point of view which is provided by category theory. A
category is a collection of objects X, Y, Z, . . . together with
a set Mor(X, Y ) of morphisms between two objects X, Y .
The composition of morphisms has similar properties as the
composition of maps. We are interested in tensor categories.
These categories have a product, denoted ⊗ and called the
tensor product. It admits several “natural” properties such
as associativity and existence of a unit object. For a more
formal treatment we refer to [27,29–31]. If the action of a
quasitriangular Hopf algebra H on the tensor product of
two quantum spaces X and Y is defined by

h� (v⊗w) = (h(1) �v)⊗ (h(2) �w) ∈ X⊗Y, h ∈ H, (6)

where the coproduct is written in the so-called Sweedler
notation, i.e. ∆(h) = h(1) ⊗ h(2), then the representations
(quantum spaces) of the given Hopf algebra (quantum al-
gebra) are the objects of a tensor category. In this ten-
sor category exist a number of morphisms of particular
importance that are covariant with respect to the Hopf
algebra action. First of all, for any pair of objects X, Y
there is an isomorphism ΨX,Y : X⊗Y → Y ⊗X such that

(g⊗ f) ◦ ΨX,Y = ΨX′,Y ′ ◦ (f ⊗ g) for arbitrary morphisms
f ∈Mor(X, X ′) and g ∈Mor(Y, Y ′). In addition to this one
requires the hexagon axiom to hold. The hexagon axiom
is the validity of the two conditions

ΨX,Z ◦ ΨY,Z = ΨX⊗Y,Z , ΨX,Z ◦ ΨX,Y = ΨX,Y ⊗ Z . (7)

A tensor category equipped with such mappings ΨX,Y for
each pair of objects X, Y is called a braided tensor cate-
gory. The mappings ΨX,Y as a whole are often referred to
as the braiding of the tensor category. Furthermore, for
any quantum space algebra X in this category there are
morphisms ∆ : X → X ⊗X, S : X → X, and ε : X → C
forming a braided Hopf algebra, i.e. ∆, S, and ε obey the
usual axioms of a Hopf algebra, but now as morphisms in
the braided category.

It is well-known that for a quasitriangular Hopf algebra
H the category of H-modules is braided, with

ΨX,Y (v⊗w) = (R(2)�w)⊗(R(1)�v), v ∈ X, w ∈ Y, (8)

where R = R(1) ⊗ R(2). In terms of quantum space gen-
erators the above identity becomes

ΨX,Y (Xi ⊗ Y j) = R̂ij
kl Y

k ⊗X l, (9)

where summation over repeated indices is to be under-
stood. Notice that the matrix R̂ describes nothing other
than a linear mapping between vector spaces spanned by
tensor products of quantum space generators. In the cases
under consideration this mapping can be restricted to in-
variant subspaces. As a consequence, R̂ admits a projector
decomposition of the general form [32,33]

R̂ = αSPS + αAPA + αT PT , (10)

where αS , αA, and αT denote the corresponding eigenval-
ues. The projectors PS and PA are quantum analogs of a
symmetrizer and an antisymmetrizer, respectively, while
PT projects onto a one-dimensional subspace generated by
the quantum length.

The relations of the quantum symmetric space are de-
termined by [34]

(PA)ij
kl X

kX l = 0, (11)

and likewise for the quantum antisymmetric space (q-
deformed Grassmann algebra),

(PS)ij
kl θ

kθl = 0, (PT )ij
kl θ

kθl = 0. (12)

Alternatively, the two identities defining quantum anti-
symmetric space can be combined in the following way:

θiθj =
(
(PS)ij

kl + (PA)ij
kl + (PT )ij

kl

)
θkθl (13)

= (PA)ij
kl θ

kθl = α−1
A R̂ij

kl θ
kθl.

Let us mention that the quantum spaces obtained this
way satisfy the so-called Poincaré–Birkhoff–Witt property,
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i.e. the dimension of a subspace of homogenous polynomi-
als should be the same as for the corresponding classical
variables. This property is the deeper reason why normal
ordered monomials again constitute a basis of q-deformed
Grassmann algebras. Consequently, each q-deformed su-
pernumber can be represented in the general form

f(θ) = f ′ +
∑

fK θ K , (14)

where the f are arbitrary complex numbers and the θK

stand for monomials of a given normal ordering.
Next, we want to deal with the covariant differential cal-

culus on quantum spaces [35–37]. Such a differential calcu-
lus can be established by introducing an exterior derivative
d with the usual properties of nilpotency and Leibniz rule:

d2 = 0, (15)

d(fg) = (df)g + (−1)|f |f(dg),

where

|f | =
{

0, if f bosonical,
1, if f fermionical.

(16)

In addition to this, we require that the differentials of
the coordinates,

ξi ≡ dXi, ηi ≡ dθi, (17)

are subject to the relations

(PS)ij
kl ξ

kξl = 0, (PT )ij
kl ξ

kξl = 0, (18)

(PA)ij
kl η

kηl = 0, (PT )ij
kl η

kηl = 0. (19)

With the same reasonings already applied in (13) the above
identities lead to

ξiξj = α−1
A R̂ij

kl ξ
kξl, ηiηj = α−1

S R̂ij
kl η

kηl. (20)

In order to find commutation relations between coor-
dinates and differentials, we make as ansatz

Xiξj = Bij
kl ξkX l, θiηj = Cij

kl ηkθl. (21)

Applying the exterior derivative to both sides of the above
equations and comparing the results with (20) then yields
for the unknown coefficients

Bij
kl = −α−1

A R̂ij
kl, Cij

kl = α−1
S R̂ij

kl. (22)

As a next step we introduce partial derivatives by

d = ξi(∂x)i and d = ηi(∂θ)i. (23)

From (15) together with (21) it can be shown that the
following Leibniz rules hold:

(∂x)iX
j = δj

i − α−1
A R̂jk

il X l(∂x)k, (24)

(∂θ)iθ
j = δj

i − α−1
S R̂jk

il θl(∂θ)k.

We could also have started our considerations from the
inverse braiding

Ψ−1
X,Y (v ⊗ w) =

(
(R−1)(1) � w

)
⊗

(
(R−1)(2) � v

)
, (25)

leading us to

Ψ−1
X,Y (Xi ⊗ Y j) = (R̂−1)ij

kl Y
k ⊗X l. (26)

R̂−1 denotes the inverse of R̂, so its projector decomposition
is given by

R̂−1 = α−1
S PS + α−1

A PA + α−1
T PT . (27)

Repeating the same steps as before we get relations for
conjugated objects. However, their explicit form can be
obtained from the above relations most easily by applying
the substitutions

R̂→ R̂−1, αA,S,T → α−1
A,S,T , (28)

∂i
x → ∂̂i

x, ∂i
θ → ∂̂i

θ,

ai → āi, ai ∈ {ξi, ηi, Xi, θi}.
Lastly, let us say a few words about the Hopf struc-

tures on quantum spaces. With the L-matrix and its con-
jugate [38], which can be introduced by

ΨX,Y (ai ⊗ w) =
(
(La)i

j � w
)⊗ aj , (29)

Ψ−1
X,Y (ai ⊗ w) =

(
(L̄a)i

j � w
)⊗ aj ,

the two Hopf structures on quantum space generators can
be written as [39]

∆(ai) = ai ⊗ 1 + (La)i
j ⊗ aj , (30)

∆̄(ai) = ai ⊗ 1 + (L̄a)i
j ⊗ aj ,

S(ai) = −S(La)i
j aj , S̄(ai) = −S(L̄a)i

j aj , (31)

ε(ai) = ε̄(ai) = 0. (32)

One should notice that the entries of the L-matrices live in
the corresponding quantum algebra H. This way, we can
conclude that the above expressions are part of the Hopf
structure of the crossed product algebra A � H.

3 Two-dimensional quantum plane

We begin by describing the two-dimensional antisym-
metrized quantumplane algebra explicitly. For this purpose
we need the projector decomposition of the R-matrix for
Uq(su2) [32]:

R̂ = qPS − q−1PA. (33)

One should notice that in this case PA and PT coincide,
so we have only two different projectors in (33). For the
antisymmetrized coordinates, the decomposition in (33)
implies [cf. (13)]

θiθj = −qR̂ij
kl θ

kθl. (34)
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Inserting the explicit form for the R-matrix [33], we get
from (34) the following independent relations:

(θ1)2 = (θ2)2 = 0, θ1θ2 = −q−1θ2θ1. (35)

To go further, we introduce supernumbers, which we
can write in the form

f(θ1, θ2) = f ′ + f1θ
1 + f2θ

2 + f12θ
1θ2. (36)

Using relations (35) it is not very difficult to show that the
product of two supernumbers can be written as

(f · g)(θ1, θ2) (37)

= (f · g)′ + (f · g)1 θ1 + (f · g)2 θ2 + (f · g)12 θ1θ2,

with

(f · g)′ = f ′g′, (38)

(f · g)i = fig
′ + f ′gi, i = 1, 2,

(f · g)12 = f1g2 − qf2g1 + f ′g12 + f12g′.
Next, we come to the action of symmetry generators

on supernumbers. To this end, we have to recall that both
bosonic and fermionic coordinates transform as spinors un-
der the action of the symmetry algebra Uq(su2). Using for
Uq(su2) the form as it was introduced in [14] the commuta-
tion relations between its independent generators (denoted
by T+, T−, and τ) and the spinor components ai, i = 1, 2,
read

T+a1 = qa1T+ + q−1a2, (39)

T+a2 = q−1a2T+, T−a1 = qa1T−, (40)

T−a2 = q−1a2T− + qa1, τa1 = q2a1τ, (41)

τa2 = q−2a2τ.

From the above relations we can derive the action of
the symmetry generators on a supernumber of the form
(36). To this end, we repeatedly apply the commutation
relations (39)–(41) to the product of a symmetry generator
and a supernumber, until we obtain an expression with all
symmetry generators standing to the right of all quantum
plane coordinates. In doing so, we get the left action of a
symmetry generator on a supernumber. Explicitly, we find

T+ � f(θ1, θ2) = q−1f1θ
2, (42)

T− � f(θ1, θ2) = qf2θ
1,

τ � f(θ1, θ2) = f(q2θ1, q−2θ2).

Right actions of symmetry generators on supernumbers
can be derived in a similar way, if we now consider a gener-
ator standing to the right of a supernumber and commute
it to the left of all quantum space coordinates. Proceeding
in this manner one can verify a remarkable correspondence
between right and left actions. More concretely, we have
the transformations

f(θ1, θ2) � T± i↔i′
←→ −q∓3T∓ � f(θ1, θ2), (43)

f(θ1, θ2) � τ
i↔i′
←→ τ � f(θ1, θ2),

where the symbol i↔i′
←→ indicates the following transitions:

θi i↔i′
←→ θi′

, θiθj i↔i′
←→ θj′

θi′
, (44)

f ′ i↔i′
←→ f ′, fi

i↔i′
←→ fi′ , fij

i↔i′
←→ fj′i′ ,

i′ ≡ 3− i, i, j = 1, 2.

For this to become clearer, we give as an example

−q3T+ � f(θ1, θ2) = −q2f1θ
2 i↔i′
←→

−q2f2θ
1 = f(θ1, θ2) � T−. (45)

Now, we turn our attention to the covariant differential
calculus on the quantum plane. The differentials of bosoni-
cal and fermionical coordinates are subject to the relations
[cf. (20)]

ξiξj = −qR̂ij
kl ξ

kξl, ηiηj = q−1R̂ij
kl η

kηl, (46)

which is consistent with [cf. (21) and (22)]

Xiξj = qR̂ij
kl ξ

kX l, θiηj = q−1R̂ij
kl η

kθl. (47)

In what follows we need the q-deformed spinor metric
εij and its inverse εij given by [42]

ε11 = ε22 = 0, ε12 = −q−1/2, ε21 = q1/2, (48)

and
εij = −εij . (49)

Now, we are able to raise and lower spinor indices as usual,
i.e.

ai = εija
j , ai = εijaj . (50)

With the identity

εnk R̂ij
kl = q(R̂−1)ni

lk εkj , (51)

one may check that for partial derivatives with upper in-
dices the Leibniz rules in (24) become

∂i
xXj = εij + q2(R̂−1)ij

kl X
k∂l

x, (52)

∂i
θθ

j = εij − (R̂−1)ij
kl θ

k∂l
θ.

Applying the substitutions

∂a → ∂̂a, a→ ā, a ∈ {ξ, η, X, θ}, (53)

q → q−1, R̂→ R̂−1,

to relations (46), (47), and (52) then yields the correspond-
ing identities for the conjugated differential calculus.

Next, we want to deal on with the actions of partial
derivatives on supernumbers. This way, we can proceed
in very much the same way as was done in the case of
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symmetry generators. Written out explicitly, the relations
in (52) become for the fermionic case

∂1
θθ1 = −q−1θ1∂1

θ , (54)

∂1
θθ2 = −q−1/2 − θ2∂1

θ ,

∂2
θθ1 = q1/2 − θ1∂2

θ + λθ2∂1
θ , (55)

∂2
θθ2 = −q−1θ2∂2

θ ,

and likewise for the conjugated partial derivatives,

∂̂1
θ θ̄1 = −qθ̄1∂̂1

θ , (56)

∂̂1
θ θ̄1 = −q−1/2 − θ̄2∂̂1

θ − λθ̄1∂̂2
θ ,

∂̂1
θ θ̄1 = q1/2 − θ̄1∂̂2

θ , (57)

∂̂1
θ θ̄1 = −qθ̄2∂̂2

θ ,

where λ = q − q−1. From (54) and (55) it follows that

∂1
θ � f(θ2, θ1) = −q−1/2f2 − q−1/2f21θ

1, (58)

∂2
θ � f(θ2, θ1) = q1/2f1 − q−1/2f21θ

2.

Repeating the same steps as before for conjugated par-
tial derivatives aswell as right actions one can verify the cor-
respondences

∂̂i
θ �̄ f(θ̄1, θ̄2)

i
q

→
→

i′
1/q←→ −∂i′

θ � f(θ2, θ1), (59)

q−1f(θ̄2, θ̄1) �̄ ∂̂i
θ

i
q

→
→

i′
1/q←→ −qf(θ1, θ2) � ∂i′

θ ,

and

f(θ1, θ2) � ∂i
θ

i↔i′
←→ −q−1∂̂i′

θ �̄ f(θ̄1, θ̄2), (60)

f(θ̄2, θ̄1) �̄ ∂̂i
θ

i↔i′
←→ −q∂i′

θ � f(θ2, θ1),

where the symbol
i
q

→
→

i′
1/q←→ nowdescribes substitutions given by

θi
i
q

→
→

i′
1/q←→ θi′

, θiθj
i
q

→
→

i′
1/q←→ θi′

θj′
, (61)

f ′
i
q

→
→

i′
1/q←→ f ′, fi

i
q

→
→

i′
1/q←→ fi′ , fij

i
q

→
→

i′
1/q←→ fi′j′ ,

q
i
q

→
→

i′
1/q←→ q−1, i, j = 1, 2.

It should be noticed that the normal ordering the repre-
sentation of a supernumber refers to is indicated by the
order in which arguments are arranged in the symbol for
the supernumber (see also Appendix A).

Now, we come to the Hopf structure on quantum space
generators. A brief glance at (30) and (31) shows us that
the explicit form of coproduct and antipode is completely
determined by the L-matrices. Therefore, our task is to
find for the unknown entries of the L-matrix combinations

of symmetry generators that produce the correct commu-
tation relations between generators of different quantum
spaces. In other words, exploiting the identities

aibj =
(
(La)i

k � bj
)

ak, biaj =
(
(L̄b)i

k � aj
)

bk, (62)

we should be able to regain the relations in (46), (47),
(52), and their conjugated counterparts (if inhomogeneous
terms are discounted). We have found L-matrices with this
property. Inserting their explicit form into (30) and (31)
we get for coproduct, antipode, and counit the expressions

∆(a1) = a1 ⊗ 1 + Λ(a)τ−1/4 ⊗ a1, (63)

∆(a2) = a2 ⊗ 1 + Λ(a)τ1/4 ⊗ a2

−qλΛ(a)τ−1/4T+ ⊗ a1,

S(a1) = −Λ−1(a)τ1/4a1, (64)

S(a2) = −Λ−1(a)τ−1/4a2 − q2λΛ−1(a)τ−1/4T+a1,

ε(a1) = ε(a2) = 0, (65)

and similarly for the Hopf structure to the conjugated L-
matrix,

∆̄(a1) = a1 ⊗ 1 + Λ−1(a)τ1/4 ⊗ a1

+q−1λΛ−1(a)τ−1/4T− ⊗ a2, (66)

∆̄(a2) = a2 ⊗ 1 + Λ−1(a)τ−1/4 ⊗ a2,

S̄(a1) = −Λ(a)τ−1/4a1 + q−2λΛ(a)τ−1/4T−a2, (67)

S̄(a2) = −Λ(a)τ1/4a2,

ε̄(a1) = ε̄(a2) = 0, (68)

where a stands for one of the following quantities:

a ∈ {∂x, ∂θ, X, θ, ξ, η}. (69)

From (63) and (66) we can see that the L-matrices
depend on unitary scaling operators denoted by Λ(a). To
understand the occurrence of these scaling operators we
have to take a look at the commutation relations in (47) and
(52), which tell us that the braiding between generators of
different quantum spaces is given by the R-matrix or its
inverse up to a constant factor. The point now is that the
action of the scaling operators have been determined in such
a way that the relations in (62) lead to the correct factors
if we consider the braiding between generators of different
quantum spaces. This can be achieved by specifying the
scaling operators according to

Λ(∂i
x) = Λ−3/4, Λ(Xi) = Λ3/4, Λ(ηi) = Λ−1/4 (70)

and

Λ(∂i
θ) = Λ̃−3, Λ(θi) = Λ̃3, Λ(ξi) = Λ̃3, (71)

where the grouplike operators Λ and Λ̃ satisfy the commu-
tation relations

ΛXi = q−2XiΛ, Λ̃Xi = q3/2XiΛ̃, (72)
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Λ∂i
x = q2∂i

xΛ, Λ̃∂i
x = q−3/2∂i

xΛ̃,

Λξi = q−2ξiΛ, Λ̃ξi = −q−1/2ξiΛ̃,

Ληi = q
2
3 ηiΛ, Λ̃ηi = q−1/2ηiΛ̃,

Λθi = q−2θiΛ, Λ̃θi = −q−1/2θiΛ̃,

Λ∂i
θ = q2∂i

θΛ, Λ̃∂i
θ = −q1/2∂i

θΛ̃.

Finally, let us notice that the above identities for the scal-
ing operator have been derived by exploiting consistence
arguments like

aibj =
(
(La)i

k � bj
)

ak = bk (ai � (L̄b)
j
k), (73)

biaj =
(
(L̄b)i

k � aj
)

bk = ak (bi � (La)j
k).

4 Three-dimensional Euclidean space

All considerations of the previous sections pertain equally
to the three-dimensional q-deformed Euclidean space [14].
Thus we can restrict ourselves to stating the results, only.
Now, the projector decomposition of the R-matrix becomes

R̂ = PS − q−4PA + q−6PT . (74)

The relations for the fermionic quantum space coordinates
are given by

θAθB = −q4R̂AB
CD θCθD, (75)

which is equivalent to the following independent relations:

(θ+)2 = (θ−)2 = 0, (76)

θ3θ3 = λ θ+θ−,

θ+θ− = −θ−θ+,

θ±θ3 = −q±2θ3θ±.

Using the above relations one can show that the product
of two supernumbers represented by

f(θ+, θ3, θ−) (77)

= f ′ + f+ θ+ + f3 θ3 + f− θ− + f+3 θ+θ3

+f+− θ+θ− + f3− θ3θ− + f+3− θ+θ3θ−

now becomes

(f · g)(θ+, θ3, θ−) (78)

= (f · g)′ + (f · g)+ θ+ + (f · g)3 θ3 + (f · g)− θ−

+(f · g)+3 θ+θ3 + (f · g)+− θ+θ− + (f · g)3− θ3θ−

+(f · g)+3− θ+θ3θ−,

with

(f · g)′ = f ′g′, (79)

(f · g)A = fA g′ + f ′gA, A ∈ {+, 3,−},
(f · g)+3 = f+ g3 − q−2f3 g+ + f ′g+3 + g′f+3, (80)

(f · g)3− = f3 g− − q−2f− g3 + f ′g3− + g′f3−,

(f · g)+− = f+ g− − f− g+ + λf3 g3

+f ′g+− + g′f+−,

(f · g)+3− = f+ g3− − q−2f3 g+− + q−2f− g+3 (81)

+f+3 g− − q−2f+− g3 + q−2f3− g+

+f ′g+3− + g′f+3−.

Next, we come to the action of symmetry generators on
supernumbers. To this end, let us notice that fermionic co-
ordinates of three-dimensional q-deformed Euclidean space
transform under the action of Uq(su2) like the components
of a vector. Thus, the commutation relations between the
generators of Uq(su2) and the fermionic coordinates read

L+θ+ = θ+L+, L+θ3 = θ3L+ − qθ+τ−1/2, (82)

L+θ− = θ−L+ − θ3τ−1/2,

L−θ+ = θ+L− + θ3τ−1/2,

L−θ3 = θ3L− + q−1θ−τ−1/2, L−θ− = θ−L−, (83)

τ−1/2θ± = q±2θ±τ−1/2, τ−1/2θ3 = θ3τ−1/2. (84)

From these relations we get the representations

L+ � f(θ+, θ3, θ−) (85)

= −qf3 θ+ − f− θ3 − f+− θ+θ3 − qf3− θ+θ−,

L− � f(θ+, θ3, θ−) (86)

= q−1f3 θ− + f+ θ3 + qf+3 θ+θ− + q−2f+− θ3θ−,

τ−1/2 � f(θ+, θ3, θ−) = f(q2θ+, θ3, q−2θ−). (87)

They are related with right representations by either the
transformation rules

f(θ+, θ3, θ−) � L± +↔−←→ L∓ � f(θ+, θ3, θ−), (88)

or

f(θ+, θ3, θ−) � τ−1/2 = τ1/2 � f(θ+, θ3, θ−), (89)

The symbol +↔−←→ indicates the transitions

θA1 . . . θAn
+↔−←→ θAn . . . θA1 , (90)

fA1...An

+↔−←→ fAn...A1
,

f ′ +↔−←→ f ′,

where we have introduced indices with bar by Ā =
(+, 3,−) = (−, 3, +).

Now, we turn to the differentials, which have to be
subject to the relations

ξAξB = −q4R̂AB
CD ξCξD, ηAηB = R̂AB

CD ηCηD, (91)

and

XAξB = q4R̂AB
CD ξCXD, θAηB = R̂AB

CD ηCθD. (92)
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The last two relations imply the Leibniz rules

∂A
x XB = gAB + (R̂−1)AB

CD XC∂D
x , (93)

∂A
θ θB = gAB − q−4(R̂−1)AB

CD θC∂D
θ ,

where gAB denotes the quantum metric of the three-
dimensional q-deformed Euclidean space. In complete anal-
ogy to the previous section, the relations for the conjugated
quantities follow from the above identities by applying
the substitutions

∂a → ∂̂a, a→ ā, a ∈ {ξ, η, X, θ}, (94)

q → q−1, R̂→ R̂−1.

For the fermionic derivatives the Leibniz rules read ex-
plicitly

∂+
θ θ+ = −q−4θ+∂+

θ , (95)

∂+
θ θ3 = −q−2θ3∂+

θ + q−2λλ+θ+∂3
θ ,

∂+
θ θ− = −q − θ−∂+

θ + q−1λλ+θ3∂3
θ − q−1λ2λ+θ+∂−

θ ,

∂3
θθ+ = −q−2θ+∂3

θ , (96)

∂3
θθ3 = 1− q−2θ3∂3

θ + q−1λλ+θ+∂−
θ ,

∂3
θθ− = −q−2θ−∂3

θ + q−2λλ+θ3∂−
θ ,

∂−
θ θ+ = −q−1 − θ+∂−

θ , (97)

∂−
θ θ3 = −q−2θ3∂−

θ , ∂−
θ θ− = −q−4θ−∂−

θ ,

where λ+ ≡ q + q−1. By the substitutions

∂A
θ → ∂̂Ā

θ , θA → θ̄Ā, q → q−1, (98)

we get the corresponding relations for the conjugated differ-
ential calculus. In a straightforward manner, we can derive
from the identities in (95)–(97) the actions of the fermionic
derivatives on supernumbers. This way, we obtain

∂+
θ � f(θ+, θ3, θ−) (99)

= −qf− + q−3f+− θ+ + q−1f3− θ3 − q−5f+3− θ+θ3,

∂3
θ � f(θ+, θ3, θ−) (100)

= f3 − q−2f+3 θ+ + f3− θ− − q−2f+3− θ+θ−,

∂−
θ � f(θ+, θ3, θ−) (101)

= −q−1f+ − q−1f+3 θ3 − q−1f+− θ− − q−1f+3− θ3θ−.

The relationship between the different types of represen-
tations is now given by

∂A
θ � f(θ+, θ3, θ−)

+
q

→
→

−
1/q←→ ∂̂Ā

θ �̄ f(θ̄−, θ̄3, θ̄+), (102)

q−2f(θ̄+, θ̄3, θ̄−) �̄ ∂̂A
θ

+
q

→
→

−
1/q←→ q2f(θ−, θ3, θ+) � ∂Ā

θ ,

and

f(θ̄+, θ̄3, θ̄−) �̄ ∂̂Ā
θ

+↔−←→ q2∂A
θ � f(θ+, θ3, θ−), (103)

f(θ−, θ3, θ+) � ∂Ā
θ

+↔−←→ q−2∂̂A
θ �̄ f(θ̄−, θ̄3, θ̄+),

where
+
q

→
→

−
1/q←→ denotes the transition given by

θA1 . . . θAn

+
q

→
→

−
1/q←→ θA1 . . . θAn , (104)

fA1...An

+
q

→
→

−
1/q←→ fA1...An

,

f ′
+
q

→
→

−
1/q←→ f ′, q

+
q

→
→

−
1/q←→ q−1.

Last but not least we would like to concentrate our
attention to the Hopf structures for the various types of
quantum spaces. In general we have

∆(a−) = a− ⊗ 1 + Λ(a)τ−1/2 ⊗ a−, (105)

∆(a3) = a3 ⊗ 1 + Λ(a)⊗ a3 + λλ+Λ(a)L+ ⊗ a−,

∆(a+) = a+ ⊗ 1 + Λ(a)τ1/2 ⊗ a+

+qλλ+Λ(a)τ1/2L+ ⊗ a3

+q2λ2λ+Λ(a)τ1/2(L+)2 ⊗ a−,

S(a−) = −Λ−1(a)τ1/2a−, (106)

S(a3) = −Λ−1(a)a3 + q2λλ+Λ−1(a)τ1/2L+a−,

S(a+) = −Λ−1(a)τ−1/2a+ + qλλ+Λ−1(a)L+a3

−q4λ2λ+Λ−1(a)τ1/2(L+)2a−,

ε(a+) = ε(a3) = ε(a−) = 0, (107)

and likewise in the conjugated case

∆̄(a+) = a+ ⊗ 1 + Λ−1(a)τ−1/2 ⊗ a+, (108)

∆̄(a3) = a3 ⊗ 1 + Λ−1(a)⊗ a3

+λλ+Λ−1(a)L− ⊗ a+,

∆̄(a−) = a− ⊗ 1 + Λ−1(a)τ−1/2 ⊗ a−

+q−1λλ+Λ−1(a)τ1/2L− ⊗ a3

+q−2λ2λ+Λ−1(a)τ1/2(L−)2 ⊗ a+,

S̄(a+) = −Λ(a)τ1/2a+, (109)

S̄(a3) = −Λ(a)a3 + q−2λλ+Λ(a)τ1/2L−a+,

S̄(a−) = −Λ(a)τ−1/2a− + q−1λλ+Λ(a)L−a3

−q−4λ2λ+Λ(a)τ1/2(L−)2a+,

ε̄(a+) = ε̄(a3) = ε̄(a−) = 0, (110)

where a again denotes one of the following objects:

a ∈ {∂x, ∂θ, X, θ, ξ, η}. (111)

The scaling operators have to be specified by

Λ(∂A
x ) = Λ1/2, Λ(XA) = Λ−1/2, Λ(ηA) = Λ1/2,

(112)
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and

Λ(∂A
θ ) = Λ̃, Λ(θA) = Λ̃−1, Λ(ξA) = Λ̃−1, (113)

which requires the operators Λ and Λ̃ to satisfy

ΛXA = q4XAΛ, Λ̃XA = q2XAΛ̃, (114)

Λ∂A
x = q−4∂A

x Λ, Λ̃∂A
x = q−2∂A

x Λ̃,

ΛξA = q4ξAΛ, Λ̃ξA = −q−2ξAΛ̃,

ΛηA = q−4ηAΛ, Λ̃ηA = q−2ηAΛ̃,

ΛθA = q4θAΛ, Λ̃θA = −q−2θAΛ̃,

Λ∂A
θ = q−4∂A

θ Λ, Λ̃∂A
θ = −q2∂A

θ Λ̃.

5 Four-dimensional Euclidean space

The q-deformed Euclidean space in four dimensions can be
treated in very much the same way as the Euclidean space
in three dimensions. Thus, we summarize our results only.
The projector decomposition for the R-matrix is [32,43]

R̂−1 = q−1PS − qPA + q3PT . (115)

The commutation relations among the fermionic coordi-
nates can be written in the general form

θiθj = −qR̂ij
klθ

kθl, (116)

which leads to the independent relations

(θi)2 = 0, i = 1, . . . , 4, (117)

θ1θj = −q−1θjθ1, j = 1, 2,

θjθ4 = −q−1θ4θj ,

θ1θ4 = −θ4θ1, θ2θ3 = −θ3θ2 + λθ1θ4.

For supernumbers of the form

f(θ1, θ2, θ3, θ4) (118)

= f ′ +
4∑

i=1

fiθ
i +

∑
1≤i1<i2≤4

fi1i2θ
i1θi2

+
∑

1≤i1<i2<i3≤4

fi1i2i3θ
i1θi2θi3 + f1234θ

1θ2θ3θ4,

we can again calculate an expression for their product.
Explicitly, we have

(f · g)(θ1, θ2, θ3, θ4) (119)

= (f · g)′ +
4∑

i=1

(f · g)iθ
i +

∑
1≤i1<i2≤4

(f · g)i1i2θ
i1θi2

+
∑

1≤i1<i2<i3≤4

(f · g)i1i2i3θ
i1θi2θi3 + (f · g)1234θ1θ2θ3θ4,

with

(f · g)′ = f ′g′, (120)

(f · g)i = fig
′ + f ′gi, i = 1, . . . , 4,

(f · g)1j = f1jg
′ + f ′g1j + f1gj − qfjg1, j = 2, 3,

(f · g)j4 = fj4g
′ + f ′gj4 + fjg4 − qf4gj , (121)

(f · g)23 = f23g
′ + f ′g23 + f2g3 − f3g2,

(f · g)14 = f14g
′ + f ′g14 + f1g4 − f4g1 + λf3g2,

(f · g)123 = f123g
′ + f ′g123 + f1g23 − qf2g13 + qf3g12

+f12g3 − f13g2 + q2f23g1, (122)

(f · g)124 = f124g
′ + f ′g124 + f1g24 − qf2g14 + qf4g12

+f12g4 − qf14g2 − qλf23g2 + qf24g1,

(f · g)134 = f134g
′ + f ′g134 + f1g34 + qf3g14

−qλf3g23 + qf4g13 + f13 g4 − qf14 g3

+qf34 g1,

(f · g)234 = f234 g′ + f ′g234 + f2 g34 − f3 g24

+q2f4 g23 + f23 g4 − qf24 g3 + qf34 g2,

(f · g)1234 = f1234 g′ + f ′g1234 + f1g234 − qf2 g134

+qf3 g124 − q2f4g123 + f12g34 − f13g24

+q2f14g23 + q2f23g14 − q2λf23g23 (123)

−q2f24g13 + q2f34g12 + f123g4 − qf124g3

+qf134g2 − q2f234g1.

Next, we come to the commutation relations between
symmetry generators of Uq(so4) (we use here the form as
it was presented in [43]) and fermionic coordinates:

L+
1 θ1 = qθ1L+

1 − q−1θ2, L+
1 θ2 = q−1θ2L+

1 ,

L+
1 θ3 = qθ3L+

1 + q−1θ4, L+
1 θ4 = q−1θ4L+

1 , (124)

L+
2 θ1 = qθ1L+

2 − q−1θ3, L+
2 θ2 = qθ2L+

2 + q−1θ4,

L+
2 θ3 = q−1θ3L+

2 , L+
2 θ4 = q−1θ4L+

2 , (125)

L−
1 θ1 = qθ1L−

1 , L−
1 θ2 = q−1θ2L−

1 − qθ1,

L−
1 θ3 = qθ3L−

1 , L−
1 θ4 = q−1θ4L−

1 + qθ3,
(126)

L−
2 θ1 = qθ1L−

2 , L−
2 θ2 = qθ2L−

2 , (127)

L−
2 θ3 = q−1θ3L−

2 − qθ1, L−
2 θ4 = q−1θ4L−

2 + qθ2,

K1θ
1 = q−1θ1K1, K1θ

2 = qθ2K1, (128)

K1θ
3 = q−1θ3K1, K1θ

4 = qθ4K1,

K2θ
1 = q−1θ1K2, K2θ

2 = q−1θ2K2,

K2θ
3 = qθ3K2, K2θ

4 = qθ4K2. (129)

With these relations it is straightforward to show that the
actions of the symmetry generators on supernumbers take
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the form

L+
1 � f(θ1, θ2, θ3, θ4) (130)

= −q−1f1θ
2 + q−1f3θ

4 + f13θ
1θ4 − q−1f13θ

2θ3

+(q−2f23 − q−1f14)θ2θ4

+q−1f123θ
1θ2θ4 − q−1f134θ

2θ3θ4,

L+
2 � f(θ1, θ2, θ3, θ4) (131)

= −q−1f1θ
3 + q−1f2θ

4 + q−2f12θ
1θ4 + q1f12θ

2θ3

−(q−1f14 + f23)θ3θ4

−q−1f123θ
1θ3θ4 + q−1f124θ

2θ3θ4,

L−
1 � f(θ1, θ2, θ3, θ4) (132)

= −qf2θ
1 + qf4θ

3 − qf24θ
1θ4 + f24θ

2θ3

+q(qf14 − f23)θ1θ3

+qf124θ
1θ2θ3 − qf234θ

1θ3θ4,

L−
2 � f(θ1, θ2, θ3, θ4) (133)

= −qf3θ
1 + qf4θ

2 − q−1f34θ
1θ4 − f34θ

2θ3

+q2(f14 + qf23)θ1θ2

−qf134θ
1θ2θ3 + qf234θ

1θ2θ4,

and

K1 � f(θ1, θ2, θ3, θ4)

= f(q−1θ1, qθ2, q−1θ3, qθ4), (134)

K2 � f(θ1, θ2, θ3, θ4)

= f(q−1θ1, q−1θ2, qθ3, qθ4).

If we are interested in right representations, we can either
apply the transformation rules

f(θ1, θ2, θ3, θ4) � L±
i

i↔i′
←→ q∓3L∓

i � f(θ1, θ2, θ3, θ4), (135)

or

f(θ1, θ2, θ3, θ4) � K1 = K−1
1 � f(θ1, θ2, θ3, θ4), (136)

f(θ1, θ2, θ3, θ4) � K2 = K−1
2 � f(θ1, θ2, θ3, θ4),

where i↔i′
←→ denotes the transition

θi1 . . . θin
i↔i′
←→ θi′

n . . . θi′
1 , (137)

fi1...in

i↔i′
←→ fi′

n...i′
1
,

f ′ i↔i′
←→ f ′,

and the conjugated index is given by i′ ≡ 5− i.
For the differentials we know that the relations [36]

ξiξj = −qR̂ij
kl ξ

kξl, ηiηj = q−1R̂ij
kl η

iηk (138)

and

Xiξj = qR̂ij
kl ξ

kX l, θiηj = q−1R̂ij
kl η

iθj (139)

hold. Using these identities we can verify that the Leibniz
rules now take the form

∂i
xXj = gij + q(R̂−1)ij

kl X
k∂l

x, (140)

∂i
θθ

j = gij − q−1(R̂−1)ij
kl θ

k∂l
θ,

where gij denotes the four-dimensional quantumspacemet-
ric. Again, the relations of the conjugated differential calcu-
lus are obtained most easily by applying the substitutions

∂a → ∂̂a, a→ ā, a ∈ {ξ, η, X, θ}, (141)

q → q−1, R̂→ R̂−1,

Written out explicitly, the Leibniz rules become in the
fermionic case

∂1
θθ1 = −q−2θ1∂1

θ , ∂1
θθ2 = −q−1θ2∂1

θ , (142)

∂1
θθ3 = −q−1θ3∂1

θ , ∂1
θθ4 = q−1 − θ4∂1

θ ,

∂2
θθ1 = −q−1θ1∂2

θ + q−1λθ2∂1
θ , ∂2

θθ2 = −q−2θ2∂2
θ ,

∂2
θθ3 = 1− θ3∂2

θ − λθ4∂1
θ , ∂2

θθ4 = −q−1θ4∂2
θ , (143)

∂3
θθ1 = −q−1θ1∂3

θ + q−1λθ3∂1
θ , (144)

∂3
θθ2 = 1− θ2∂3

θ − λθ4∂1
θ , ∂3

θθ3 = −q−2θ3∂3
θ ,

∂3
θθ4 = −q−1θ4∂3

θ ,

∂4
θθ1 = q − θ1∂4

θ − λ(θ2∂3
θ + θ3∂2

θ + λθ4∂1
θ ), (145)

∂4
θθ2 = −q−1θ2∂4

θ + q−1λθ4∂2
θ ,

∂4
θθ3 = −q−1θ3∂4

θ + q−1λθ4∂3
θ , ∂4

θθ4 = −q−2θ4∂4
θ ,

while the substitutions

∂i
θ → ∂̂i′

θ , θi → θ̄i′
, q → q−1, (146)

lead to the corresponding relations for the conjugateddiffer-
ential calculus. With the same reasonings already applied
in the previous sections we find

∂1
θ � f(θ4, θ3, θ2, θ1) (147)

= q−1f4 + q−1f41θ
1 + q−1f42θ

2 + q−1f43θ
3

+q−1f421θ
2θ1 + q−1f432θ

3θ2 + q−1f431θ
3θ1

+q−1f4321θ
3θ2θ1,

∂2
θ � f(θ4, θ3, θ2, θ1) (148)

= f3 + f31θ
1 + f32θ

2 − q−1f43θ
4 + f321θ

2θ1

−q−1f431θ
4θ1 − q−1f432θ

4θ2 − q−1f4321θ
4θ2θ1,

∂3
θ � f(θ4, θ3, θ2, θ1) (149)

= f2 + f21θ
1 − q−2f32θ

3 − q−1f42θ
4 − q−2f321θ

3θ1

−q−1f421θ
4θ1 + q−3f432θ

4θ3 + q−3f4321θ
4θ3θ1,

∂4
θ � f(θ4, θ3, θ2, θ1) (150)

= qf1 − f21θ
2 − f31θ

3 − q−1(f41 − λf32)θ4

+q−1f321θ
3θ2 + q−2f421θ

4θ2 + q−2f431θ
4θ3
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+q−1λf321θ
4θ1 − q−3f4321θ

4θ3θ2.

The different types of representations are linked via

∂i
θ � f(θ4, θ3, θ2, θ1) (151)

i
q

→
→

i′
1/q←→ ∂̂i′

θ �̄ f(θ̄1, θ̄2, θ̄3, θ̄4),

q−2f(θ̄4, θ̄3, θ̄2, θ̄1) �̄ ∂̂i
θ (152)

i
q

→
→

i′
1/q←→ q2f(θ1, θ2, θ3, θ4) � ∂i′

θ ,

and

f(θ̄4, θ̄3, θ̄2, θ̄1) �̄ ∂̂i′
θ (153)

i↔i′
←→ q2∂i

θ � f(θ4, θ3, θ2, θ1),

f(θ1, θ2, θ3, θ4) � ∂i′
θ (154)

i↔i′
←→ q−2∂̂i

θ �̄ f(θ̄1, θ̄2, θ̄3, θ̄4),

where
i
q

→
→

i′
1/q←→ stands for

θi1 . . . θin

i
q

→
→

i′
1/q←→ θi′

1 . . . θi′
n , (155)

fi1...in

i
q

→
→

i′
1/q←→ fi′

1...i′
n
,

f ′
i
q

→
→

i′
1/q←→ f ′,

q
i
q

→
→

i′
1/q←→ q−1.

Finally, we would like to present the Hopf structures for
the various four-dimensional quantum spaces. In general,
we have

∆(a1) = a1 ⊗ 1 + Λ(a)K1/2
1 K

1/2
2 ⊗ a1, (156)

∆(a2) = a2 ⊗ 1 + Λ(a)K−1/2
1 K

1/2
2 ⊗ a2

+qλΛ(a)K1/2
1 K

1/2
2 L+

1 ⊗ a1,

∆(a3) = a3 ⊗ 1 + Λ(a)K1/2
1 K

−1/2
2 ⊗ a3

+qλΛ(a)K1/2
1 K

1/2
2 L+

2 ⊗ a1,

∆(a4) = a4 ⊗ 1 + Λ(a)K−1/2
1 K

−1/2
2 ⊗ a4

−q2λ2Λ(a)K1/2
1 K

1/2
2 L+

1 L+
2 ⊗ a1

−qλΛ(a)K−1/2
1 K

1/2
2 L+

2 ⊗ a2

−qλΛ(a)K1/2
1 K

−1/2
2 L+

1 ⊗ a3,

S(a1) = −Λ−1(a)K−1/2
1 K

−1/2
2 a1, (157)

S(a2) = −Λ−1(a)K1/2
1 K

−1/2
2 (a2 − q2λL+

1 a1),

S(a3) = −Λ−1(a)K−1/2
1 K

1/2
2 (a3 − q2λL+

2 a1),

S(a4) = −Λ−1(a)K1/2
1 K

1/2
2

(
a4 + q2λ(L+

1 a3 + L+
2 a2)

)

−q4λ2Λ−1(a)K1/2
1 K

1/2
2 L+

1 L+
2 a1,

ε(a1) = ε(a2) = ε(a3) = ε(a4) = 0, (158)

and

∆̄(a1) = a1 ⊗ 1 + Λ−1(a)K−1/2
1 K

−1/2
2 ⊗ a1 (159)

−q−2λ2Λ−1(a)K1/2
1 K

1/2
2 L−

1 L−
2 ⊗ a4

−q−1λΛ−1(a)K1/2
1 K

−1/2
2 L−

1 ⊗ a2

−q−1λΛ−1(a)K−1/2
1 K

1/2
2 L−

2 ⊗ a3,

∆̄(a2) = a2 ⊗ 1 + Λ−1(a)K1/2
1 K

−1/2
2 ⊗ a2

−q−1λΛ−1(a)K1/2
1 K

1/2
2 L−

2 ⊗ a4,

∆̄(a3) = a3 ⊗ 1 + Λ−1(a)K−1/2
1 K

1/2
2 ⊗ a3

+q−1λΛ−1(a)K1/2
1 K

1/2
2 L−

1 ⊗ a4,

∆̄(a4) = a4 ⊗ 1 + Λ−1(a)K1/2
1 K

1/2
2 ⊗ a4,

S̄(a1) = −Λ(a)K1/2
1 K

1/2
2

(
a1 + q−2λ(L−

1 a2 + L−
2 a3)

)
+q−4λ2Λ(a)K1/2

1 K
1/2
2 L−

1 L−
2 a4, (160)

S̄(a2) = −Λ(a)K−1/2
1 K

1/2
2 (a2 − q−2λL−

2 a4),

S̄(a3) = −Λ(a)K−1/2
1 K

1/2
2 (a3 − q−2λL−

1 a4),

S̄(a4) = −Λ(a)K−1/2
1 K

−1/2
2 a4,

ε̄(a1) = ε̄(a2) = ε̄(a3) = ε̄(a4) = 0, (161)

where
a ∈ {∂x, ∂θ, X, θ, ξ, η}. (162)

In order to regain relations (147)–(150) and their conju-
gated versions from theL-matrices determining the coprod-
ucts in (156) and (159), we have to represent the operators
Λ(a) as

Λ(∂i
x) = Λ1/2, Λ(Xi) = Λ−1/2, Λ(ηi) = Λ1/2 (163)

and

Λ(∂i
θ) = Λ̃−1, Λ(θi) = Λ̃, Λ(ξi) = Λ̃, (164)

which requires one to impose on the unitary and grouplike
scaling operators Λ and Λ̃ the commutation relations

ΛXi = q2XiΛ, Λ̃Xi = q−1XiΛ̃, Λ∂i
x = q−2∂i

xΛ,

Λ̃∂i
x = q∂i

xΛ̃, Λξi = q2ξiΛ, Λ̃ξi = −qξiΛ̃, (165)

Ληi = q2ηiΛ, Λ̃ηi = qηiΛ̃, Λθi = q2θiΛ,

Λ̃θi = −qθiΛ̃, Λ∂i
θ = q−2∂i

θΛ, Λ̃∂i
θ = −q−1∂i

θΛ̃.

6 Minkowski space

In this section we would like to deal with q-deformed
Minkowski space [10,12–14,44] which from a physical point
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of view is the most interesting case in this article (for other
deformations of spacetime and their related symmetries
we refer to [45–50]). We follow the same line of arguments
as in the previous sections. The R-matrix now obeys the
decomposition [33]

R̂II = q−2PS − PA + q2PT . (166)

The relations for the fermionic coordinates are completely
determined by

θiθj = −(R̂II)
ij
klθ

kθl, (167)

from which we obtain as independent relations

(θµ)2 = 0, µ ∈ {+,−, 0}, (168)

θ3θ± = −q∓2θ±θ3,

θ3θ3 = λθ+θ−, θ+θ− = −θ−θ+,

θ±θ0 + θ0θ± = ±q∓1λθ±θ3,

θ0θ3 + θ3θ0 = λθ+θ−.

Instead of dealing with the coordinate θ3 or θ0 it is often
more convenient to work with the light-cone coordinate
θ3/0 = θ3 − θ0, for which we have the additional relations

(θ3/0)2 = 0, θ±θ3/0 = −θ3/0θ±, (169)

θ0θ3/0 + θ3/0θ0 = −λθ+θ−,

θ±θ0 + q±2θ0θ± = ±q±1λθ±θ3/0,

θ3θ3/0 + θ3/0θ3 = −λθ+θ−.

The product of two supernumbers of the form

f(θ+, θ3, θ0, θ−) (170)

= f ′ + f+θ+ + f0θ
0 + f3θ

3 + f−θ− + f+3θ
+θ3

+f+0θ
+θ0 + f+−θ+θ− + f30θ

3θ0 + f3−θ3θ−

+f0−θ0θ− + f+30θ
+θ3θ0 + f+3−θ+θ3θ−

+f+0−θ+θ0θ− + f30−θ3θ0θ− + f+30−θ+θ3θ0θ−

now becomes

(f · g)(θ+, θ3, θ0, θ−) (171)

= (f · g)′ + (f · g)+θ+ + (f · g)0θ0 + (f · g)3θ3

+(f · g)−θ− + (f · g)+3θ
+θ3 + (f · g)+0θ

+θ0

+(f · g)+−θ+θ− + (f · g)30θ3θ0 + (f · g)3−θ3θ−

+(f · g)0−θ0θ− + (f · g)+30θ
+θ3θ0

+(f · g)+3−θ+θ3θ− + (f · g)+0−θ+θ0θ−

+(f · g)30−θ3θ0θ− + (f · g)+30−θ+θ3θ0θ−,

with

(f · g)′ = f ′g′, (172)

(f · g)µ = fµg′ + f ′gµ, µ ∈ {+, 3, 0,−},

(f · g)+0 = f+0g
′ + f ′g+0 + f+g0 − f0g+, (173)

(f · g)30 = f30g
′ + f ′g30 + f3g0 − f0g3,

(f · g)0− = f0−g′ + f ′g0− + f0g− − f−g0,

(f · g)+− = f+−g′ + f ′g+− + f+g− − f−g+ + λf3g3

−λf0g3,

(f · g)+3 = f+3g
′ + f ′g+3 + f+g3 − q−2f3g+

−q−1λf0g+,

(f · g)3− = f3−g′ + f ′g3− + f3g− − q−2f−g3

−q−1λf−g0,

(f · g)+30 = f+30g
′ + f ′g30 + f+g30 − q−2f3g+0

+f0g+3 − q−1λf0g+0 (174)

+f+3g0 − f+0g3 + q−2f30g+,

(f · g)30− = f30−g′ + f ′g30− + f3g0− − f0g3−

+q−2f−g30 + f30g− − f3−g0 + q−2f0−g3

+q−1λf0−g0,

(f · g)+0− = f+0−g′ + f ′g+0− + f+g0− − f0g+−

−λf3g30 + f−g+0 − λf0g30 + f+0g−

−f+−g0 + f0−g+ + λf30g3,

(f · g)+3− = f+3−g′ + f ′g+3− + q−1λf+g3−

−q−2f−g+3 − q−2f3g+− − q−1λf0g+−

−q−1λf−g+0 − q−1λ2f3g30 − q−1λ2f0g30

+f+3g− − q−2f+−g3 + q−2f3−g+

−q−2f+−g3 − q−1λf+−g0 + q−1λf0−g+

+q−1λ(λ− q−1)f30g3,

(f · g)+30− = f+30−g′ + f ′g+30− + f+g30−

−q−2f3g+0− (175)

+f0g+3− − q−2f−g+30− − q−1λf0g+0−

+f+3g0− − f+0g3− + q−2f+−g30

+q−2f30g+− − q−2f3−g+0 + q−2f0−g+3

+q−2λf30g30 + f+30g− − f+3−g0

+q−2f+0−g3 − q−2f30−g+ + q−1λf+0−g0.

Next, we turn to the commutation relations between
generators of q-deformed Lorentz algebra (for its definition
see [12,44]) and fermionic coordinates. Explicitly, they read

T+θ0 = θ0T+, (176)

T+θ3/0 = θ3/0T+ + q−3/2λ
1/2
+ θ+, T+θ+ = q−2θ+T+,

T+θ− = q2θ−T+ + q−1/2λ
1/2
+ θ3,

T−θ0 = θ0T−, (177)

T−θ3/0 = θ3/0T− + q3/2λ
1/2
+ θ−, T−θ− = q2θ−T−,
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T−θ+ = q−2θ+T− + q1/2λ
1/2
+ θ3,

τ3θ0 = θ0τ3, τ3θ3/0 = θ3/0τ3,

τ3θ+ = q−4θ+τ3, τ3θ− = q4θ−τ3, (178)

T 2θ3/0 = q−1θ3/0T 2, T 2θ+ = qθ+T 2, (179)

T 2θ− = q−1θ−T 2 + q−3/2λ
−1/2
+ θ3/0τ1,

T 2θ3 = qθ3T 2 − qλ−1
+ λθ3/0T 2 + q−1/2λ

−1/2
+ θ+τ1,

S1θ3/0 = qθ3/0S1, S1θ− = qθ−S1, (180)

S1θ+ = q−1θ+S1 − q−1/2λ
−1/2
+ θ3/0σ2,

S1θ3 = q−1θ3S1 + q−1λ−1
+ λθ3/0S1 − q1/2λ

−1/2
+ θ−σ2,

τ1θ3/0 = qθ3/0τ1, τ1θ− = q−1θ−τ1, (181)

τ1θ+ = qθ+τ1 − q3/2λ
−1/2
+ λ2θ3/0T 2,

τ1θ3 = q−1θ3τ1 + q−1λ−1
+ λθ3/0τ1 − q1/2λ

−1/2
+ λ2θ−T 2,

σ2θ3/0 = q−1θ3/0σ2, σ2θ+ = q−1θ+σ2, (182)

σ2θ− = qθ−σ2 + q1/2λ
−1/2
+ λ2θ3/0S1,

σ2θ3 = qθ3σ2 − qλ−1
+ λθ3/0σ2 + q−1/2λ

−1/2
+ λ2θ+S1.

The generators T+, T−, and τ3 span a Uq(su2)-subalgebra
of the q-deformed Lorentz algebra. With the above relations
at hand we find for its generators the following actions
on supernumbers:

τ3 � f(θ+, θ3, θ0, θ−) = f(q−4θ+, θ3, θ0, q4θ−) (183)

T− � f(θ+, θ3, θ0, θ−) (184)

= q3/2λ
1/2
+ f3θ

− + q3/2λ
1/2
+ f+3θ

+θ−

+q1/2λ
1/2
+ f+0θ

3θ0 − q3/2λ
1/2
+ f30θ

0θ−

+q1/2λ
1/2
+ (f+− + λf30)θ3θ−

−q3/2λ
1/2
+ f3+0θ

+θ0θ− + q1/2λ
1/2
+ f+0−θ3θ0θ−

+q1/2λλ
1/2
+ f+30θ

+θ3θ−,

T+ � f(θ+, θ3, θ0, θ−) (185)

= q−3/2λ
1/2
+ f3θ

+ − q−1/2λ
1/2
+ f0−θ3θ0

+q−3/2λ
1/2
+ f30θ

+θ0 + q−5/2λ
1/2
+ f+−θ+θ3

+λ
1/2
+ (q1/2f3− + q−1/2λf0−)θ+θ−

−q−5/2λ
1/2
+ f+0−θ+θ3θ0 + q1/2λ

1/2
+ f30−θ+θ0θ−

−q−1/2λλ
1/2
+ f30−θ+θ3θ−.

Right representations are obtained most easily by either
applying the transformations

f(θ+, θ0, θ3, θ−) � T± (186)
+↔−←→ −q∓3T∓ � f(θ+, θ3, θ0, θ−)

or the identity

f(θ+, θ0, θ3, θ−) � τ3 = f(q4θ+, θ0, θ3, q−4θ−), (187)

where

θµ1 . . . θµn
+↔−←→ θµn . . . θµ1 , (188)

fµ1...µn

+↔−←→ fµn...µ1 ,

f ′ +↔−←→ f ′,

with the conjugated index now defined by

µ̄ = (+, 3, 3/0, 0,−) = (−, 3, 3/0, 0, +). (189)

For the remaining generators we have

σ2 � f(θ+, θ3, θ3/0, θ−) (190)

= q−1f+θ+ + qf−θ− + qf3θ
3

+(q−1f3/0 − qλ−1
+ λf3)θ3/0

+f+3θ
+θ3 + f+−θ+θ− + q2f3−θ3θ−

+f3,3/0θ
3θ3/0 + (f3/0,− − q2λλ−1

+ f3−)θ3/0θ−

+(q−2f+,3/0 − λλ−1
+ f+3)θ+θ3/0

+q−1f+3,3/0θ
+θ3θ3/0 + qf+3−θ+θ3θ−

+qf3,3/0,−θ3θ3/0θ−

+(q−1f+,3/0,− − qλλ−1
+ f+3−)θ+θ3/0θ−

+f+3,3/0,−θ+θ3θ3/0θ−,

τ1 � f(θ+, θ3, θ3/0, θ−) (191)

= q−1f−θ− + qf+θ+ + q−1f3θ
3

+(qf3/0 + q−1λ−1
+ λf3)θ3/0

+f+3θ
+θ3 + f+−θ+θ− + q−2f3−θ3θ−

+f3,3/0θ
3θ3/0 + q2(f+3/0 + λλ−1

+ f+3)θ+θ3/0

+(f3/0,− + λλ−1
+ f3−)θ3/0θ−

+qf+3,3/0θ
+θ3θ3/0 + q−1f+3−θ+θ3θ−

+q−1f3,3/0,−θ3θ3/0θ−

+(qf+,3/0,− + λλ−1
+ (2(λ + q)− q2)f+3−)θ+θ3/0θ−

+f+3,3/0,−θ+θ3θ3/0θ−,

S1 � f(θ+, θ3, θ3/0, θ−) (192)

= −q−1/2λ
−1/2
+ f+θ3/0 − q1/2λ

−1/2
+ f3θ

−

+q1/2λ
−1/2
+ f+3θ

3θ3/0 + q−1/2λ
−1/2
+ (qλ− 1)f+3θ

+θ−

+λ
−1/2
+ (q−1/2f3,3/0 − q1/2f+−)θ3/0θ−

+q3/2λ
−1/2
+ f+3−θ3θ3/0θ−
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+q−3/2λ
−1/2
+ (1− qλ)f+3,3/0θ

+θ3/0θ−,

T 2 � f(θ+, θ3, θ3/0, θ−) (193)

= q−3/2λ
−1/2
+ f−θ3/0 + q−1/2λ

−1/2
+ f3θ

+

+q−1/2λ
−1/2
+ f3−θ3θ3/0 + q−3/2λ

−1/2
+ f3−θ+θ−

+λ
−1/2
+ (q1/2f3,3/0 + q−1/2f+−)θ+θ3/0

+q1/2λ
−1/2
+ f+3−θ+θ3θ3/0

+q−1/2λ
−1/2
+ f3,3/0,−θ+θ3/0θ−.

The easiest way to derive the corresponding right repre-
sentations is to use the identity

S−1(h) � f = f � h (194)

together with [44]

S−1(T 2) = −q−2T 2(τ3)1/2, (195)

S−1(S1) = −S1(τ3)−1/2,

S−1(τ1) = σ2, S−1(σ2) = τ1.

Now, let us consider the differentials, which obey the
commutation relations [44]

ξµξν = −(R̂II)µν
ρσ ξρξσ, ηµην = q2(R̂II)µν

ρσ ηρησ (196)

and

Xµξν = (R̂II)µν
ρσ ξρXσ, θµην = q2(R̂II)µν

ρσ ηρθσ. (197)

The Leibniz rules being compatible with the identities in
(197) read

∂µ
xXν = ηµν + q−2(R̂−1

II )µν
ρσ Xρ∂σ

x , (198)

∂µ
θ θν = ηµν − q−1(R̂−1

II )µν
ρσ θρ∂σ

θ ,

where ηµν stands for the metric of q-deformed Minkowski
space. With the substitutions

∂a → ∂̂a, a→ ā, a ∈ {ξ, η, X, θ}, (199)

q → q−1, R̂→ R̂−1,

the formulae in (196)–(198) transform into those of the
conjugated calculus.

As in the previous sections, we would like to write down
the Leibniz rules for the fermionic derivatives, explicitly.
In this way we have

∂
3/0
θ θ3/0 = −q2θ3/0∂

3/0
θ , (200)

∂
3/0
θ θ+ = −q2θ+∂

3/0
θ − qλθ3/0∂+

θ ,

∂
3/0
θ θ3 = 1− θ3∂

3/0
θ − λλ−1

+ θ3/0∂
3/0
θ − λθ−∂+

θ ,

∂
3/0
θ θ− = −θ−∂

3/0
θ , ∂+

θ θ3/0 = −θ3/0∂+
θ ,

∂+
θ θ+ = −q2θ+∂+

θ , (201)

∂+
θ θ3 = −q2θ3∂+

θ + q2λλ−1
+ θ3/0∂+

θ + q2λλ−1
+ θ+∂

3/0
θ ,

∂+
θ θ− = −q − θ−∂+

θ + qλλ−1
+ θ3/0∂

3/0
θ ,

∂−
θ θ3/0 = −q2θ3/0∂−

θ − qλθ−∂
3/0
θ , (202)

∂−
θ θ+ = −q−1 − θ+∂−

θ − λθ3/0∂0
θ − λ2θ−∂+

θ

−λθ3∂
3/0
θ − qλλ−1

+ θ3/0∂
3/0
θ ,

∂−
θ θ3 = −θ3∂−

θ − λλ−1
+ θ3/0∂−

θ − qλθ−∂0
θ

−λλ−1
+ (q2 + 2)θ−∂

3/0
θ ,

∂−
θ θ− = −q2θ−∂−

θ ,

∂0
θθ3/0 = 1− θ3/0∂0

θ − λθ−∂+
θ + q2λλ−1

+ θ3/0∂
3/0
θ ,

∂0
θθ+ = −θ+∂0

θ − qλθ3∂+
θ + q2λλ−1

+ θ3/0∂+
θ (203)

+q2λλ−1
+ θ+∂

3/0
θ ,

∂0
θθ3 = −q2θ3∂0

θ + q2λλ−1
+ θ3/0∂0

θ + qλλ−1
+ θ+∂−

θ

−qλλ−1
+ θ−∂+

θ + λλ−1
+ θ3∂

3/0
θ

+q2λλ−1
+ θ3/0∂

3/0
θ ,

∂0
θθ− = −q2θ−∂0

θ − λλ−1
+ θ−∂

3/0
θ + q2λλ−1

+ θ3/0∂−
θ .

The corresponding expressions for the conjugated calculus
follow from the above relations by applying the substitu-
tions

∂µ
θ → ∂̂µ̄

θ , θµ → θ̄µ̄, q → q−1. (204)

As usual, the relations in (200)–(203) enable us to compute
the action of fermionic derivatives on supernumbers:

∂+
θ � f(θ−, θ3/0, θ3, θ+) (205)

= −qf− − qf−+θ+ − qf−3θ
3

−q(f−,3/0 − λλ−1
+ f−3)θ3/0

−qf−3+θ3θ+ − q(f−,3/0,+ − λλ−1
+ f−3+)θ3/0θ+

−qf−,3/0,3θ
3/0θ3 − qf−,3/0,3+θ3/0θ3θ+,

∂
3/0
θ � f(θ−, θ3/0, θ3, θ+) (206)

= f3 + f3+θ+ − q2f3/0,3θ
3/0 − f−3θ

−

−q2f3/0,3+θ3/0θ+ − f−3+θ−θ+ + q2f−,3/0,3θ
−θ3/0

+q2f−,3/0,3+θ−θ3/0θ+,

∂0
θ � f(θ−, θ3/0, θ3, θ+) (207)

= f3/0 + f3/0,3θ
3 + (f3/0,+ − f3+λλ−1

+ )θ+

−(q2f−,3/0 + λλ−1
+ f−3)θ−

−qλλ−1
+ (f−+ − qf3/0,3)θ3/0

+f3/0,3+θ3θ+ + qλf3/0,3+θ3/0θ+ − q2f−3,3/0,3θ
−θ3

+qλλ−1
+ f−3+θ3/0θ3 − q(qf−,3/0,+ − λ2λ−1

+ f−3+)θ−θ+
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−q2f−,3/0,3+θ−θ3θ+ − q2λλ−1
+ f−,3/0,3+θ−θ3/0θ+,

∂−
θ � f(θ−, θ3/0, θ3, θ+) (208)

= −q−1f+ + q−1f3+θ3 + q(f+− − λf3/0,3)θ−

+(qf3/0,+ + q−1λλ−1
+ f3+)θ3/0

−qf3/0,3+θ3/0θ3 − qf−3+θ−θ3

−q(q2f−,3/0,+ + λλ−1
+ f−3+)θ−θ3/0

−qλf3/0,3+θ−θ+ + q3f−,3/0,3+θ−θ3/0θ3.

The other types of representations of fermionic deriva-
tives are completely determined by transformation rules
of the form

∂µ
θ � f(θ−, θ3/0, θ3, θ+) (209)
+
q

→
→

−
1/q←→ ∂̂µ̄

θ �̄ f(θ̄+, θ̄3/0, θ̄3, θ̄−),

q2f(θ̄−, θ̄3, θ̄3/0, θ̄+) �̄ ∂̂µ
θ (210)

+
q

→
→

−
1/q←→ q−2f(θ+, θ3, θ3/0, θ−) � ∂µ

θ ,

and

f(θ̄−, θ̄3, θ̄3/0, θ̄+) �̄ ∂̂µ̄
θ (211)

+↔−←→ q−2∂µ
θ � f(θ−, θ3/0, θ3, θ+),

f(θ+, θ3, θ3/0, θ−) � ∂µ
θ (212)

+↔−←→ q2∂̂µ̄
θ �̄ f(θ̄+, θ̄3/0, θ̄3, θ̄−),

where

θi1 . . . θin

+
q

→
→

−
1/q←→ θi1 . . . θin , (213)

fi1...in

+
q

→
→

−
1/q←→ fi1...in

,

f ′
+
q

→
→

−
1/q←→ f ′,

q
+
q

→
→

−
1/q←→ q−1.

Finally, we come to the Hopf structure for the quan-
tum spaces of the q-deformed Lorentz algebra. In general,
we have

∆(a3/0) = a3/0 ⊗ 1 + Λ(a)τ1 ⊗ a3/0 (214)

− q1/2λ
1/2
+ λΛ(a)(τ3)−1/2S1 ⊗ a+,

∆(a+) = a+ ⊗ 1 + Λ1/2(τ3)−1/2σ2 ⊗ a+

−q3/2λ
−1/2
+ λΛ(a)T 2 ⊗ a3/0,

∆(a−) = a− ⊗ 1 + Λ(a)(τ3)1/2τ1 ⊗ a−

−q−1/2λ
1/2
+ λΛ(a)S1 ⊗ a0

−λ2Λ(a)(τ3)−1/2T−S1 ⊗ a+

+ q−1/2λ
−1/2
+ λΛ(a)(τ1T− − q−1S1)⊗ a3/0,

∆(a0) = a0 ⊗ 1 + Λ(a)σ2 ⊗ a0

−q1/2λ
−1/2
+ λΛ(a)T 2(τ3)1/2 ⊗ a−

+ q1/2λ
−1/2
+ λΛ(a)(τ3)−1/2(T−σ2 + qS1)⊗ a+

−λ−1
+ Λ(a)

(
λ2T−T 2 + q(τ1 − σ2)

)⊗ a3/0,

S(a3/0) = −Λ−1(a)σ2a3/0 − q−3/2λ
1/2
+ λΛ−1(a)S1a+,

S(a+) = −Λ−1(a)τ1(τ3)1/2a+ (215)

−q3/2λ
−1/2
+ λΛ−1(a)T 2(τ3)1/2a3/0,

S(a−) = −Λ−1(a)σ2(τ3)−1/2a−

−q−1/2λ
1/2
+ λΛ−1(a)(τ3)−1/2S1a0

+ q−2λ2Λ−1(a)(τ3)−1/2S1T−a+

+ q−5/2λ
−1/2
+ λΛ−1(a)(τ3)−1/2

×(σ2T− − q3S1)a3/0,

S(a0) = −Λ−1(a)τ1a0 − q5/2λ
−1/2
+ λΛ−1(a)T 2a−

+ q−3/2λ
−1/2
+ λΛ−1(a)(τ1T− + qS1)a+

+ λ−1
+ Λ−1(a)(q(σ2 − τ1) + λ2T 2T−)a3/0,

ε(a3/0) = ε(a+) = ε(a−) = ε(a0) = 0, (216)

and likewise for the conjugated Hopf structure,

∆̄(a3/0) = a3/0 ⊗ 1 + Λ−1(a)(τ3)1/2σ2 ⊗ a3/0 (217)

−q3/2λ
1/2
+ λΛ−1(a)T 2 ⊗ a−,

∆̄(a−) = a− ⊗ 1 + Λ−1(a)τ1 ⊗ a−

−q1/2λ
−1/2
+ λΛ−1(a)(τ3)−1/2S1 ⊗ a3/0,

∆̄(a+) = a+ ⊗ 1 + Λ−1(a)σ2 ⊗ a+

−q1/2λ
1/2
+ λΛ−1(a)T 2(τ3)1/2 ⊗ a0

−q1/2λ
−1/2
+ λΛ−1(a)(τ3)−1/2(T+σ2 + qτ3T 2)

⊗a3/0

+q2λ2Λ−1(a)T 2T+ ⊗ a−,

∆̄(a0) = a0 ⊗ 1 + Λ−1(a)(τ3)−1/2τ1 ⊗ a0

−q−1/2λ
−1/2
+ λΛ−1(a)S1 ⊗ a+

−q1/2λ
−1/2
+ λΛ−1(a)(qT+τ1 − T 2)⊗ a−

+λ−1
+ Λ−1(a)(τ3)−1/2

× (
λ2T+S1 + q−1(τ3τ1 − σ2)

)⊗ a3/0,

S̄(a3/0) = −Λ(a)τ1(τ3)1/2a3/0

−q3/2λ
1/2
+ λΛ(a)T 2(τ3)1/2a−, (218)
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S̄(a−) = −Λ(a)σ2a− − q−3/2λ
−1/2
+ λΛ(a)S1a3/0,

S̄(a+) = −Λ(a)τ1a+ − q5/2λ
1/2
+ λΛ(a)T 2a0

−q3/2λ
−1/2
+ λΛ(a)(qτ1T+ + T 2)a3/0

−q4λ2Λ(a)T 2T+a−,

S̄(a0) = −Λ(a)(τ3)−1/2σ2a0

−q−1/2λ
−1/2
+ λΛ(a)(τ3)−1/2S1a+

−q3/2λ
−1/2
+ λΛ(a)(τ3)−1/2(σ2T+ − qτ3T 2)a−

−λ−1
+ Λ(a)(τ3)−1/2

× (
λ2T+S1 + q(σ2 − τ3τ1)

)
a3/0,

ε̄(a3/0) = ε̄(a+) = ε̄(a−) = ε̄(a0) = 0, (219)

with
a ∈ {∂x, ∂θ, X, θ, ξ, η}. (220)

The scaling operators have to take the form

Λ(∂i
x) = Λ1/2, Λ(Xi) = Λ−1/2, Λ(ηi) = Λ−1, (221)

or

Λ(∂i
θ) = Λ̃−1, Λ(θi) = Λ̃, Λ(ξi) = Λ̃, (222)

if the operators Λ and Λ̃ are subject to the relations

ΛXµ = q−2XµΛ, Λ̃Xµ = q−1XµΛ̃, (223)

Λ∂µ
x = q2∂µ

xΛ, Λ̃∂µ
x = q∂µ

x Λ̃,

Λξµ = q−2ξµΛ, Λ̃ξµ = −q−1ξµΛ̃,

Ληµ = q−4ηµΛ Λ̃ηµ = q2ηµΛ̃,

Λθµ = q−2θµΛ, Λ̃θµ = −q−1θµΛ̃,

Λ∂µ
θ = q2∂µ

θ Λ, Λ̃∂µ
θ = −q∂µ

θ Λ̃.
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Appendix A: Representations of supernumbers

In this articlewedealwith supernumbers of different normal
orderings. Thus, it can be useful to have formulae at hand
that allow to switch between the different orderings. For
this purpose we wish to list the following identities.
(1) Two-dimensional Euclidean space:

f ′ + f1θ
1 + f2θ

2 + f12θ
1θ2 (224)

= f̃ ′ + f̃1θ
1 + f̃2θ

2 + f̃21θ
2θ1,

where

f̃ ′ = f ′, f̃1 = f1, f̃2 = f2, f̃21 = −q−1f12. (225)

(2) Three-dimensional Euclidean space:

f ′ + f+θ+ + f3θ
3 + f−θ− + f+3θ

+θ3 + f+−θ+θ−

+f3−θ3θ− + f+3−θ+θ3θ−

= f̃ ′ + f̃+θ+ + f̃3θ
3 + f̃−θ− + f̃3+θ3θ+ + f̃−+θ−θ+

+f̃−3θ
−θ3 + f̃−3+θ−θ3θ+,

where

f̃ ′ = f ′, f̃A = fA, A ∈ {+, 3,−} (226)

f̃−+ = −f+−, f̃3+ = −q2f+3, f̃−3 = −q2f3−,

f̃−3+ = −q4f+3−.

(3) Four-dimensional Euclidean space:

f ′ +
4∑

i=1

fiθ
i +

∑
1≤i1<i2≤4

fi1i2θ
i1θi2 (227)

+
∑

1≤i1<i2<i3≤4

fi1i2i3θ
i1θi2θi3 + f1234θ

1θ2θ3θ4

= f̃ ′ +
4∑

i=1

f̃iθ
i +

∑
1≤i2<i1≤4

f̃i1i2θ
i1θi2

+
∑

1≤i3<i2<i1≤4

f̃i1i2i3θ
i1θi2θi3 + f̃4321θ

4θ3θ2θ1,

where

f̃ ′ = f ′, f̃i = fi, i = 1, . . . , 4, (228)

f̃21 = −q−1f12, f̃31 = −q−1f13,

f̃41 = −f14 − λf23, f̃32 = −f23, f̃42 = −q−1f24,

f̃43 = −q−1f34, f̃321 = −q−2f123,

f̃421 = −q−2f124, f̃431 = −q−2f134,

f̃432 = −q−2f234, f̃4321 = q−4f1234.

(4) Minkowski space:

f ′ + f+θ+ + f3/0θ
3/0 + f3θ

3 + f−θ− + f+,3/0θ
+θ3/0

+f+3θ
+θ3 + f+−θ+θ− + f3/0,3θ

3/0θ3 + f3−θ3θ−

+f3/0,3θ
3/0θ3 + f3/0,−θ3/0θ− + f+,3/0,3θ

+θ3/0θ3

+f+3−θ+θ3θ− + f+,3/0,−θ+θ3/0θ−

+f3/0,3−θ3/0θ3θ− + f+,3/0,3−θ+θ3/0θ3θ−

= f̃ ′ + f̃+θ+ + f̃3/0θ
3/0 + f̃3θ

3 + f̃−θ−

+f̃3/0,+θ3/0θ+ + f̃3+θ3θ+ + f̃−+θ−θ+

+f̃3,3/0θ
3θ3/0 + f̃−3θ

−θ3 + f̃−,3/0θ
−θ3/0

+f̃3,3/0,+θ3θ3/0θ+ + f̃−3+θ−θ3θ+ + f̃−,3/0,+θ−θ3/0θ+
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+f̃−3,3/0θ
−θ3θ3/0 + f̃−3,3/0,+θ−θ3θ3/0θ+,

where

f̃ ′ = f ′, f̃µ = fµ, µ ∈ {+, 3/0, 3,−}, (229)

f̃+3 = −q−2f3+, f̃+,3/0 = −f3/0,+,

f̃+− = −f−+ + λf3/0,3, f̃3,3/0 = −f3/0,3,

f̃3− = −q−2f−3, f̃3/0,− = −f−,3/0

f̃+3,3/0 = −q2f3/0,3+, f̃+3− = −q−4f−3+,

f̃+,3/0,− = −f−,3/0,+, f̃3,3/0,− = −q−2f−,3/0,3,

f̃+3,3/0,− = q−4f−,3/0,3+.
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